
Nghia's Augmented Reality (NAR) demo

System documentation (work in progress)

Nghia Ho

5th Feb 2012

1 Introduction

I wrote NAR Demo as an improvement to MarkerlessARDemo. MarkerlessARDemo was my �rst
attempt at markerless augmented reality (AR). At the time I wanted to learn how an AR system
worked. One of the main problems with MarkerlessARDemo was its reliant on CUDA, which I
happened to be learning at the time. I have since then removed any GPU dependent code and
made numerous changes. Overall NAR Demo works better, has less ambiguous parameters to
tune, and cleaner code. I want to make NAR Demo easy enough for a beginner to poke around
and understand the system. I hope someone will �nd it useful in their adventures into the AR
�eld.

In this document I will be describing how NAR works and what makes it tick. I'll be focusing
on the computer vision aspect of NAR and not on the code. The aim is to give you a good idea
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of how things work without bogging you down with the nitty gritty implementation details. For
that you can just look at the code.

I assume the reader has some familiarity with common algorithms found in computer vision,
such as

• Gaussian blurring

• Homography

• K-means clustering

• Optical �ow

This document is organised as follows, Section 2 will give an overview of the system architecture,
section 3 talks about the keypoint detection process, section 4 the feature descriptor used, section
5the detection and pose estimation process, section 6 talks about how the AR object is learnt
for detection, and some �nal words in section 7 to wrap things up.

2 System architecture

NAR is implemented as a multi-threaded system. This is required to achieve real-time frame
rates, or close to it. This comes at a small cost of latency/lag between when the frame arrives
and when it gets processed. Figure 1 shows a �ow chart of the threading system used. The
work �ow is typical of what you might �nd in a markerless augmented reality system, that is

1. Detect suitable keypoint features in the image

2. Extract a feature vector at each keypoint

3. Match the features

4. Filter out the bad matches

5. Perform pose estimation on the good matches

Step 1 is done in KeyPointThread, step 2 inside ExtractFeatureThread and steps 3 to 5 are
inside the NAR::DoWork function. There are a total of 8 threads, VideoThread + KeyPoint-
Thread + ExtractThread + a thread that calls the NAR::DoWork function. The system will
run in real-time provided each thread runs at least or faster than the incoming video frame per
second, and provided you have a multi-core CPU. I'll brie�y mention the �rst two stages in the
threading pipeline, with the rest in greater detail in the later sections.

2.1 VideoThread

This thread's job is simply to grab images from the webcam/camera and send it o� to the main
NAR thread.
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Figure 1: NAR thread �ow chart

2.2 NAR::AddNewJob

The NAR thread manages the internal KeyPointThread and ExtractFeatureThread. The entry
point to the NAR thread class is the NAR::AddNewJob function, which accepts an incoming
images. NAR::AddNewJob creates 3 di�erent resized images from the original image. This is
done to detect features at di�erent resolution levels. The default setting uses an image scaling
factor of 0.75. The 3 images are produced using the follow equation

new size = original size× 0.75k, k = [0,1,2] (1)

As an example, a 640x480 will result in following 3 images.

k image size
0 640x480
1 480x360
2 360x270

Each resized image is sent to the respective KeyPointThread.

3 KeyPointThread

The KeyPointThread's job is to detect good features in the incoming image. A good keypoint
feature should be robust to noise (a must on crappy webcams) and repeatable for a wide range
of viewpoints. I chose the Di�erence of Gaussian (DOG), an approximation to the Laplacian,
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Figure 2: Keypoint detection steps

because it has these properties. I've tried FAST [5] but it seems too susceptible to noise, though
having said that I have not done a thorough test. Figure 2 shows the keypoint detection steps,
most of the idea is borrowed from SIFT [2].

3.1 Di�erence of Gaussian (DOG)

The DOG is the di�erence between two Gaussian blurred images, expressed as

DOG = G (image, σ1)−G (image, σ2) (2)

where G is the Gaussian blurring function of an image by some sigma value. The two sigma
values I used are

σ1 = 1.6
σ2 = 1.6 ∗ 1.6 = 2.56

(3)

I chose 1.6 based on SIFT's pre blurring value, the second sigma is based on a Wikipedia
article (http://en.wikipedia.org/wiki/Difference_of_Gaussians) stating a ratio of 1.6 is
a good approximation to the Laplacian. Larger sigma values will detect larger blobs but at
a cost of an increase in run time. Since we are detecting a �xed size blob at di�erent image
resolutions we end up detecting large blobs at the lower resolution images. Each pixel in the
DOG image is examined to see if it passes all the tests shown in �gure 2.

3.2 Contrast test

The contrast test checks to see if the absolute pixel value in the DOG image is above a certain
threshold, expressed as

|DOG(x, y)| > t (4)

The |.| is the absolute value function. The DOG values can be thought of as contrast values
of blob features. A low value means low contrast, which indicates a weak blob feature, and
hence will fail the test. Since this is the cheapest test it is performed �rst. I use a t = 7.0.
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Figure 3: Example of 3x3 minima/maxima extrema pixels

3.3 Finding extrema

This step looks at the 3x3 neighbouring pixels to see if the pixel stands out, either lower or
greater than all the neighbouring values. If it meets this requirement then it is an extrema. An
example of a 3x3 minima/maxima extrema is shown in �gure 3. The centre value is compared
to the 8 neighbouring pixel values. In practice the values are �oats. This is di�erent to SIFT,
where the extrema is done in scale space as well, resulting in a 3D grid comparison.

3.4 Edge test

The edge test calculates the principal curvature at DOG(x,y) and determines whether the feature
is too 'edge' like using the ratio of eigenvalue values, but uses a maths trick so that the eigenvalues
don't have to be explicitly computed. The full eigenvalue calculation involves nasty square roots.
If a pixel position is deemed to edge like it is skipped, because they are not stable features. Figure
4 shows an image exhibiting a strong edge and the location of interest to do the edge test. I
added noise to make it easier to see the white part of the image. The red circle in the Di�erence
of Gaussian image is the location of interest.

Figure 4: Edge test using 3x3 region
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Let W be the 3x3 values indexed by

W =

 a b c
d e f
g h i

 (5)

The edge test calculation for the 3x3 window is as follows

Dxx = d− 2e+ f (6)

Dyy = b− 2e+ h (7)

Dx1 = (c− a) /2 (8)

Dx2 = (i− h) /2 (9)

Dxy = (Dx2 −Dx1) /2 (10)

The above quantities are the second order derivatives using �nite di�erencing. The ratio of
the eigenvalues is calculated as

trace = Dxx +Dyy (11)

det = DxxDyy −DxyDxy (12)

ratio = trace2/det (13)

ratio > threshold? (14)

If the ratio exceeds a threshold it is deemed an edge and the pixel is skipped. The threshold
used is 12.1. If det is less than or equal to zero then it is not an extrema location and skipped
as well. This happens when the sub-pixel localistion step does not converge correctly, which
is not often .The example in �gure 4 has a ratio of -0.13220 and is thus not an extrema. The
calculation shown is very similar to the one used to calculate Harris corner features [1], but uses
the 2x2 Hessian matrix instead.

3.5 Sub-pixel localisation

The sub-pixel localisation step re�nes the integer (x,y) position into �oating point position using
gradient descent. This is important when detecting keypoints at the lower resolution images
because any errors in the extrema's position are magni�ed when scaling back up to the original
image resolution. The extrema's sub-pixel location is found using basic gradient descent with a
learning rate of 0.5. The cost function that gets minimised is

cost = dx2 + dy2 (15)
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where dx and dy are the �rst order derivatives at DOG(x,y). The derivative at DOG(x,y) is
evaluated using the following �nite di�erencing

dx = DOG (x+ 0.1, y)−DOG (x− 0.1, y) (16)

dy = DOG (x, y + 0.1)−DOG (x, y − 0.1) (17)

The gradient descent requires evaluating pixels at fractional position using bilinear inter-
polation. The gradient descent generally converges quickly. Sub-pixel localisation is only used
when the input image is smaller than the original image size. I didn't see any point in doing it
for the original size image since it's theoretically accurate to within a pixel already, and would
add an unnecessary computation burden since more features are detected at the original image
size.

4 ExtractFeatureThread

This thread extracts a feature vector at the (x,y) position found by the KeyPointThread. I used
my own home brew rotation invariant binary feature patch, having a length of 64 bits (8 bytes)
per keypoint. The feature extraction process is shown in �gure 5.

For a given keypoint (x,y) position, an orientation is calculated using pixels within a circle
of radius 15. It's actually a circle within a 32x32 patch, but the circle doesn't centre perfectly
within the patch. For more information on the orientation calculation please see my blog post
http://nghiaho.com/?p=1198.

The orientation is used to extract a 32x32 rotated patch, which is then sampled every 4
pixels to produce a down sampled 8x8 patch. In practice, the rotation and downsampling can
be combined into one step for e�ciency. The average intensity of the patch is then calculated
and used to binarise the image by thresholding at this value. The �nal feature vector consists
of 64 bits. The 64 bit length was carefully chosen to allow the use of the POPCNT assembly
instruction found in CPUs supporting SSE4. The instruction counts the numbers of 1s in a 64
bit number in a single operation.

5 NAR::DoWork

This function is where the magic happens. It's job is to perform pose estimation to determine
the 3D pose of the AR object. Figure 6 outlines the steps involved.

5.1 Feature matching

This uses the extracted features from the three ExtractFeatureThread and matches them against
the AR object's feature (extracted beforehand). To speed up matching I used a hierarchical
K-means tree, internally just called a K-tree. If you are familiar with K-means, the K-tree
partitions the data by splitting it into 2 centroids recursively for a �xed depth. Searches are
performed just like in a binary tree by comparing which centroid is closer to the query and going
down the tree. The �nal leaf node will contain a handful of features that have to be searched
linearly, but this is okay because there's only a handful of them to go through.
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Figure 5: Extracting feature vector
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Figure 6: NAR::DoWork process

The trade o� for a deeper tree is accuracy. My implementation does not traverse back up
the tree to visit other potential nodes like in a standard KD-tree implementation. I've found in
practice this is not required.

Some of the matches will not be one to one, that is more than one query feature can point to
the same feature in the K-tree. To resolve this con�ict, the one with the lowest matching score
is kept. Here, a low score means a good match, using Hamming distance metric.

5.2 Filtering matches by orientation

A lot of the initial matches will be bad matches that need to be pruned out. We can take
advantage of the feature's orientation value to do this. I borrowed this idea from [8]. Remember
back that I use a rotation invariant feature that has an orientation associated with it. This
means the relative angle between matches are

relative angle = ShortestAngle (query, match) (18)

The ShortestAngle is a function that returns the shortest angle between A and B, and is
between 0 and 180 degrees. The angles are the accumulated into a histogram of 36 bins (every
10 degrees). Matches in the top two bins are kept. I chose the top two instead of the top to
allow for angular errors in the binning processing.

5.3 Homography with optical �ow assist

After �ltering the matches by the orientation, they are �ltered further using the homography.
RANSAC is used to �nd the best homography between the matches. However, I've observed
that using matches from the DOG features only are not enough to produce a stable homography.
It tends to jitter even when the AR object is stationary. To remedy this, additional matches
from optical �ow tracks are added. The optical �ow tracks are initialised in the previous frame
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and tracked in the current frame using the popular Lucas-Kanade optical �ow tracker [3] found
in OpenCV. The extra matches improve stability a lot.

5.4 Pose estimation

By this stage we should have �ltered out most, if not all, of the bad matches and are only left
with good matches. The pose is estimated from these matches using the Robust Planar Pose
(RPP) algorithm by [6]. This algorithm does not incorporate any outlier �ltering, hence why
it's very important to give it clean data. The algorithm �nds the best pose estimate given 2D
to 3D correspondences. The 3D points here are the features detected in the AR object, with
z=0. The x,y positions are normalised in a way such that (0,0) is at the centre of the image
and the image width is length 1.0, the height is scaled so that the aspect ratio does not change.
The pose estimated is relative to this normalised coordinate space.

5.5 Smoothing pose using alpha-beta �lter

This step takes the estimated pose from the RPP and smooths it using an alpha-beta �lter
(http://en.wikipedia.org/wiki/Alpha_beta_filter). It is similar to a Kalman �lter but
less complex and less parameters to tune, the alpha and beta values. The alpha controls how
responsive the �lter is to new pose input (position and rotation) and the beta controls the
response to new velocity input. The alpha/beta gains range from [0,1]. In general. the lower
the gains are the smoother the pose estimates but the less responsive it is to new input. I don't
actually use velocity because I found it unreliable, especially when there is motion blur. My
alpha-beta �lter update equation is

rt = Xt − X̂t−1 (19)

X̂t = X̂t−1 + αrt (20)

where X̂t is the current smoothed out pose estimate. X̂t−1 is the previous estimate, Xt is the
raw pose input, rt is the residual, and α is the gain. The pose is a 6D vector (x, y, z, yaw, pitch,
roll). The smoothing is used to reduce jittering of the AR object. This step is not required if
the pose estimation step mentioned previously is very stable.

5.6 Update search region

Being able to predict where the AR object might be in the next frame is important for good
performance. It allows us to speed up feature matching and reduce bad matches because we
don't have to process every pixel. Instead of using an active search region to predict where the
AR object is in the next frame, say using results from the alpha-beta �lter (or Kalman �lter),
I use a simpler approach instead.

My approach assumes the AR object is mostly stationary and will restrict keypoint detection
to a region in the image, formed by a bounding box around the rectangular contour of the AR
object in the previous frame. This works well if the movement is not too large, because the
search region will shift with the AR object as it moves. There is an option in the system to
increase the search region by padding the borders to cater for larger movements. An illustrative
example is shown in �gure 7.
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Figure 7: Simple search region used by NAR

5.7 Update optical �ow tracks

This step will add optical �ow tracks or reset the optical �ow tracks depending on the situation.
Optical �ows are reseted often to prevent them from going 'stale' due to drifts or bad tracking,
which will mess up pose estimation. When that happens new fresh optical �ow tracks are added.
The heuristics for this process is illustrated in the �ow chart in �gure 8.

Optical �ow tracks are reset if the count exceeds 16. The count is incremented if the system
detects signi�cant movement from the AR object. This is based on my observation that optical
�ow works well when tracking an object that doesn't move too fast, before motion blur kicks in,
but starts to degrade quickly in the opposite case. When the object is moving fast the tracked
optical �ow vectors can track incorrectly. Optical �ow tracks are also reseted if more than a
30% of the original numbers of track have been lost over time (due to tracking failure).

6 Learning the AR object for recognition

Up until now I've been focusing on the low level steps involved in detecting and estimating the
pose of the AR object. I will now discuss how the AR object is learnt and features extracted.
This is done when the program starts up and is a fast process.

My method for learning the AR object is inspired by [4]. The author presents a method
where by a planar object is warped with random a�ne transforms, producing virtually unlimited
appearances from di�erent viewpoint. The idea is to learn the object by observing it from as
much view as possible. At each view simple features are extracted. They used a DOG at 3 scale
levels to detect keypoints and random binary comparisons to produce a 300 bit feature vector.
The feature vector is not rotation, scale, or viewpoint invariant but is illumination invariant.

My approach is similar but instead of warping with a random a�ne, my a�ne is parame-
terised by three rotation angles: yaw, pitch, roll (always 0). Sscale is done implicitly by resizing
the image. The steps to derive the 2D a�ne matrix are
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Figure 8: Optical �ow update
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R4x4 =MakeRotationMatrix (yaw, pitch, roll) (21)

T = TcentreR4x4Torigin (22)

A2x3 =


X X − X
X X − X
− − − −
0 0 0 1


T

(23)

where MakeRotationMatrix is a function that returns a 4x4 rotation matrix from yaw,
pitch, roll, the matrix is padded with zeros where required. Torigin is a 4x4 matrix that shifts
the origin to the centre of the image, Tcentre is a 4x4 matrix that undoes the shift by Torigin.
A2x3 is the 2x3 a�ne matrix, by taking values marked X in matrix T .

The three rotation angles are sampled at �xed intervals as follows, all values are in degrees:

angle start end angle step
yaw 0 60 10
pitch 0 60 10
roll - - -

I prefer this method over random values because I know I'll get the same results every time
and it samples the viewpoint space uniformly. An example of a�ne warping is shown in �gure
9.

Figure 9: Example of a�ne warping parameterised by yaw, pitch, roll

For each warped image, DOG keypoints are detected and feature vectors extracted just as
described previously in the KeyPointThread and ExtractFeatureThread. However there is one
minor di�erence. The orientation calculation for the patch, to get the rotation invariance, has
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an angle ambiguity. There are two valid angles, the second one being out by 180 degrees. So
for each patch two binary vectors are stored.

7 Some �nal words

That brings us to end of the document. We've covered the threading pipeline, keypoint detection,
feature extraction, feature matching and pose estimation. Some sections I've skimmed through
while others have been given more time. This choice was made based on whether I felt a topic
was better explained with �gures and equations, or adequately explained with a few passing
sentences, and have the reader �nd information about it somewhere else. I chose to expand on
the keypoint detection step because the sub topics are often found in computer vision but lack
adequate resources for beginners eg. papers, tutorials, blogs. I might continue to keep expanding
the topics if there is a demand for them and maybe treat them as independent tutorial blogs.

So far I've only focused on the technical aspect of the AR system. However, the most
important aspect from a user point of view is the actual performance of the system. The
performance includes

1. Real-time run speed

2. Detection robustness of the AR object in di�cult views

3. Tracking robustness of the AR object during motion

4. Quality of pose estimation, jitter reduction

The four points are general and not application speci�c but are typical of the challenges facing
any AR system. On a desktop computer it is quite easy to achieve real-time speed but the
trend these days is to get AR systems working on mobile devices [9] and even towards tracking
of multiple objects [7]. Due to the limited processing power of smart phone, as compared to a
desktop computer, they have to utilise clever tricks and e�cient algorithms to get the job done.
Because of this, expect a lot of cool innovate algorithms stemming from this.

Anyway, I hope I've explain how NAR works well enough. Now go fourth and build your
own AR system!
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